Archiv für die Kategorie ‘FlippedClassroom’

Flippig sein heißt immer noch nicht Videolehre

Veröffentlicht: Montag, Oktober 9, 2017 in FlippedClassroom

Vorbemerkung: Dies ist ein Gastbeitrag von Sebastian Schmidt als Antwort auf den Gastbeitrag von Michael Gieding und auf meinen Beitrag. Auf dass die Diskussion nicht abreißen möge! 🙂

Danke Herr Gieding für Ihren wichtigen Beitrag zur Diskussion rund um den Flipped Classroom. Tatsächlich ist das Konzept mittlerweile so facettenreich umsetzbar, dass auch die Darstellung in ihrem Blogartikel wahrscheinlich in dem ein oder anderen Klassenzimmer in der ein oder anderen Unterrichtsstunde gefunden wird. Auch ich hatte ein paar derartige Stunden, die ich heute gelernt habe anders zu machen. Auch dank Ihrer Hilfe vor zwei Jahren, als wir uns via Mail ausführlich über das Thema Flipped Classroom unterhalten haben.

Unsere Diskussion hatte aber nicht mit dem Stand in Ihren Ausführungen geendet. In Ihrem Beitrag verwenden Sie die Begriffe „Flipped Classroom“, „FC“ und „Apologeten des FC“ beinahe im selben Satz wie die Kritik am Video und dem Nürnberger Trichter. Das finde ich sehr übertrieben und irritierend, wenn doch beinahe jeder Kollege in diesem Konzept das Video (auch in gehaltenen Workshops) nicht als den Mittelpunkt seiner Lehre betrachtet. Mein Unterricht besteht zu gefühlt 95% aus vielen anderen Methoden, (redundanten) Zugängen, Erfahrungen, etc. Das mag vielleicht bei dem ein oder anderen variieren, aber ich hoffe und denke, dass das Videolernen bei anderen „Flippern“ keinen deutlich höheren Anteil einnimmt.

Zu Ihrer Beschreibung eines standardisierten Mathematikunterrichts schreibe ich nichts mehr, das erkenne ich leider auch so. Ich würde sogar noch weiter gehen. Ich kenne Fälle, in denen der Frontalanteil weit über 10-20 Minuten geht und die SchülerInnen meist zu Hause zum ersten mal selbstständig arbeiten. Aber jetzt in medias res, ich werde konkret.

Das Trapez im Flipped Classroom

Sie haben vorzüglich ein Beispiel beschrieben, das man eigentlich nicht erklären sollte. Der Ablauf in meinem Flipped Classroom schaut bei diesem Thema wie folgt aus:
1. Vorbereitende Hausaufgabe mit einem Impulsvideo (AB vorher ausgeteilt)

2. Im Unterricht: Vorstellen der gefundenen Erkenntnisse, gemeinsame Erarbeitung der Eigenschaften dieses Vierecks und Versuch einer Namensgebung. Das alles möglichst ohne große Hilfe der Lehrkraft, sondern vom Schüler(in) moderiert (in den 5./6. Klassen moderiere ich noch häufig mit)

3. Ergebnissicherung via Skizzen an der Tafel (durch die Schüler) und Visualisierung via Beamer /Dokumentenkamera (keine Ergebnissicherung in Form eines Heftaufschriebs -> siehe Punkt 5)

4. Differenzierte Übungsphasen mit vertiefenden Aufgaben, weitere Zugänge durch weitere Aufgaben (redundante Zugänge, Gegenrepräsentanten in diesem Fall), Verwendung von Geogebra, bettermarks, Methoden wie Aktives Plenum bei komplexen Aufgaben, haptische Elemente zum (Be-)Greifen, und und und.

5. Hausaufgabe auf die nächste Stunde: Ergebnissicherung des Erlernten (Wiederholung, Nachholen verpasster Inhalte,…) via Video mit anschließdem Heftaufschrieb inklusiver ausstehender Fragen.

Ich meine hier dem entdeckenden Lernen gerecht zu werden und vor allem durch die Auslagerung der Erstbegegnung unterschiedlichere Zugänge zu erhalten, über die sich dann leichter diskutieren lässt. Dabei ist es wichtig, dass Fehler gemacht werden dürfen und keine Notengebung in diesem 2. Zeitraum stattfindet, höchstens im positiven Sinne.

Bei manchen anderen Themen lasse ich das Impulsvideo auch weg, dann lasse ich beispielsweise in Stamm-/Expertengruppen ein Thema bearbeiten (z.B. Verschiebung Normalparabel) und gehe quasi dann wie oben vor nur ohne den ersten Punkt. In den meisten Fällen setze ich ein Erklärvideo nur zur Nachbereitung ein. Da ist es für mich aber IMMER sinnvoll. Zu diesem Zeitpunkt wird eigentlich nicht mehr gelernt sondern das (hoffentlich) Verstandene ein zweites Mal gefestigt. Manche SchülerInnen haben sich gekonnt vor aller Arbeit gedrückt und erhalten auf diesem Weg wenigstens ein bisschen die Möglichkeit, Lücken zu schließen. Manche haben es zwar verstanden, brauchen aber noch einmal Sicherheit – vor allem vor Schulaufgaben. Seit zwei Jahren erstelle ich Videos nur zusammen mit Impulsvideos, davor hatte ich die Erklärvideos meist nur zur Nachbereitung aufgegeben. Die Videos, welche ich für YouTube erstelle, sind für alle konzipiert, dass es sowohl den Inhalt der Unterrichtsstunde wiederholt, gleichzeitig aber auch im Notfall den SchülerInnen gerecht wird, die durch Krankheit etc. Unterrichtsausfall die Erarbeitung verpasst haben. Das ist im heutigen Schulalltag leider so oft der Fall.

Didaktik should drive pupils‘ learning

Beim Lernen mit neuen Medien fand ich Jürgen Handkes Spruch passend wie gut reflektiert: Didactics must drive technology. Das trifft auf den Flipped Classroom, aber auch auf alle darin oder in anderen Kontexten eingesetzten Tools zu. Ich würde hier noch ergänzen: „Die Didaktik sollte das Lernen der SchülerInnen antreiben und vor allem sollte das Lernen der SchülerInnen die Didaktik antreiben.“

Ich habe tatsächlich das Trapez-Video auch schon als Vorbereitung auf den Unterricht aufgegeben, genauer gesagt ganz zu Beginn meiner Flip-Zeit:

(auf YouTube habe ich es erst ein Jahr später hochgeladen) Der Grund war ein einfacher. Vom Studium geprägt habe ich brav meinen Unterricht nach dem Prinzip des Entdeckendes Lernen aufgezogen. Die Essenz in der damaligen Matheklasse war, dass kaum einer an dem entdeckenden Prozess teilhaben wollte, obwohl ich den Anspruch an die damit verbundenen Aufgabenstellungen (die in anderen Klassen schon erfolgreich funktionierte) immer weiter herunter geschraubt hatte. Das ist der Punkt: Beim Entdeckenden Lernen vergisst man, dass zumindest ein ganz klein wenig Motivation dazu gehört. Ich weiß manchmal nicht ob Nicht-Praktiker wissen, mit welchen Aufmerksamkeitsstörungen und Arbeitshaltungen wir teilweise in heutigen Klassen zu kämpfen haben. Das hat sich in den letzten in meinen Augen dramatisch verschlechtert.
 Mit jeder Unterrichtsstunde wurde die Mitarbeit und dann auch die Leistung immer noch schlechter, die Ängste wuchsen und die Eltern rannten mir die Bude ein, ich würde es nicht anständig erklären. Also setzte ich auf eben solche Erklärvideos, auch als Vorbereitung. Das gab den SchülerInnen die notwendige Sicherheit, wenigstens die nachfolgenden Übungen selbstständig zu bearbeiten. Ich sage hier nicht, dass es nachhaltig war, auf diese Weise zu unterrichten, aber es gab mir die Möglichkeit, die SchülerInnen mit ins Boot zu holen, um sie zu späterer Zeit auf die wirkliche Reise durch die Mathematik zu nehmen. Den Aspekt, dass das abstrakte Denkvermögen nicht ausreicht, um dann Übungen dazu zu machen finde ich nicht passend. In diesen Fällen gibt es in jedem Buch sehr einfache Übungen zu Beginn, die dann in der Intension gesteigert werden und zur Vertiefung mit weiteren Zugängen beitragen. 
Ich sehe es so wie Christian Spannagel in seinem Blog: Flippig sein wenns passt und nicht immer ist der fachdidaktisch richtige Einsatz von Methoden der richtige für die Situation meiner SchülerInnen. Ich will erfolgreiche SchülerInnen, die sich Themen und Vertiefungen selbstständig erarbeiten können. Dazu motiviere ich, wenn es sein muss, auch einmal mit einem Erklärvideo. In einem meiner Blogartikel hatte ich mir dazu detaillierter Gedanken gemacht.

Wann ein Erklärvideo vorab, wann entdeckend?

Ich danke Christian Spannagel für die Differenzierung, wann er ein Erklärvideo zur Einführung einer Thematik einsetzt und wann es besser ist, entdeckend zu lehren. Für uns als Lehrer ist es nicht so einfach hier den richtigen Weg zu gehen und das richtig voneinander abzuwägen. Außerdem hat unsere Ausbildung nicht einen derartigen Tiefgang. Jeder hat seine Prägung im Studium, spätestens im Referendariat erhalten. Anders wie man sich das vielleicht von Didaktikern erhofft hat, hat man die Wirksamkeit von Methoden nicht selbstentdeckend erfahren sondern meist in langen Vorträgen erklärt bekommen. 
Dabei unterschieden sich leider die Ansichten vieler Didaktiker, man betrachte nur die Diskussion zur Kompetenzorientierung in zwei beinahe gegensätzlichen offenen Briefen von Mathematikprofessoren. Wir haben als Lehrer nicht die Zeit, neben den tatsächlich immer mehr werdenden Verpflichtungen neben dem Unterricht (kann man nicht da einmal die Stellschraube ansetzen?) auch noch jede wissenschaftliche Theorie zu einer Thematik in all unseren Fächern und dann noch der Pädagogik, der Medienpädagogik etc. etc. etc. zu erforschen, zu ergründen und in der Praxis anzuwenden. Ich habe 24 Deputatsstunden, davon dieses Jahr 14 Mathematikstunden, soll ich jedes Mal den aktuellen Stand der Wissenschaft bemühen, um dann erst stundenlang meinen Unterricht daraufhin vorzubereiten? Hier brauchen wir mehr Hand in Hand Arbeit mit den Wissenschaftlern an Universitäten, daher bin ich um jeden Input von Christian, aber auch Michael Gieding dankbar. 
So sammeln wir Lehrer immer wieder neue Idee, um vielleicht die SchülerInnen zu noch mehr Selbstständigkeit anzutreiben. Dabei funktionieren manche Sachen gut und manche Sachen eben nicht, obwohl es ein Wissenschaftler eben gerade als wirksam herausgefunden hat. Manchmal brauchen wir auch ein paar Jahre oder neue Impulse, um eine Wirksamkeit festzustellen. Manchmal wissen wir nicht einmal, warum etwas funktioniert oder warum nicht. Am Ende wollen wir aber Kinderaugen zum Strahlen bringen und nicht zum Weinen. Was hilft es mir, wenn ich mich an alle Theorien halte, die Leistung meiner Klasse aber dabei den Bach runter geht oder am Ende viele durchfallen müssen?

Fazit: Ich möchte selbstständig arbeitende SchülerInnen, die auch ein wenig an meinem Modell lernen. Die aber auch ohne meine Anleitung einen Wert im Fach Mathematik erhalten, auch wenn es neben den Kompetenzen am Ende doch um die Note geht. Das klappt für mich gut in meinem Flipped Classroom und wahrscheinlich in vielen anderen auch. Ich möchte weiterhin mit dem Potential von Videos meinen Unterricht gestalten und werde zu passender Zeit (abhängig von den SchülerInnen) wieder darauf verzichten. Aber vor allem möchte ich jeden Tag dazu lernen, was geht und was nicht geht. Dafür brauche ich die Wissenschaft an meiner Seite. Eine aggressive öffentliche Auseinandersetzung hat vor allem im Bildungsbereich in meinen Augen nur Verlierer. Ich will Gewinner!

Advertisements

Flippig sein wenn’s passt!

Veröffentlicht: Dienstag, Oktober 3, 2017 in FlippedClassroom
Schlagwörter:

Ich schulde Michael und euch schon länger eine Antwort auf Michas Beitrag Nicht flippig genug zu seiner Kritik am Einsatz des Flipped Classroom im Mathematikunterricht der Sekundarstufe I. Es war viel los in den letzten Monaten. Das Prorektorat für Forschung, Medien und IT an unserer Hochschule lässt mir wenig Zeit für anderes, und ich achte seit längerem auch auf eine ausgeglichene Work-Life-Balance. Doch genug der müden Entschuldigungsversuche, es wird langsam Zeit zu antworten. Ich hab mir heute die Zeit genommen, ein paar Gedanken aufzuschreiben, die mir schon lange auf dem Herzen liegen. Los geht’s.

Keine Methode ist eine Super-Methode

Zu Beginn ein paar grundsätzliche Überlegungen zu Unterrichtsmethoden: Flipped Classroom ist nicht die beste Methode, und auch nicht grundsätzlich besser als andere Methoden. Das gilt für alle Methoden. Unterricht – egal ob an der Schule oder Hochschule – ist zu komplex, als dass man so einfache Aussagen treffen könnte wie „Flipped Classroom ist besser als Methode X“. Entscheidend ist der Kontext: Die Klassenstufe, das Fach, der Inhalt, die zu erlernenden Kompetenzen, das Klassenklima, die Leistungsfähigkeit und -bereitschaft der Klasse (und letztlich jedes einzelnen Schülers bzw. jeder einzelnen Schülerin), die pädagogische, fachliche und fachdidaktische Kompetenz der Lehrperson, die Uhrzeit, das Wetter, die Reichhaltigkeit des Frühstücks vom Vormittag. Bitte beliebig ergänzen. Alle zu berücksichtigenden Kontextfaktoren ergeben zusammengenommen einen multidimensionalen Raum, in dem man ziemlich viele verschiedene Unterrichtskontexte verorten kann. Im einen Kontext ist Methode A besser, im anderen Methode B. Unter anderem braucht es daher Lehrer/innen, die mit all ihrem Wissen und ihrem Einfühlungsvermögen eine passende Methode für den entsprechenden Kontext auswählen. Ansonsten hätten wir schon längst computergesteuerte Unterrichtssettings, und Versuche in dieser Art sind ja bekanntlich schon mehrfach erheblich gescheitert. Gedankenspiel: Wenn wir den absolut gleichen Klassenkontext haben und nur eine Variable verändern, kann das schon bedeuten, dass eine Methode nicht mehr funktioniert und eine andere besser ist. Gleicher Kontext, andere Lehrperson: andere Methode. Gleicher Kontext, anderes Klassenklima: andere Methode. Das bedeutet nicht, dass fachdidaktische Überlegungen zur Eignung einer Methode für einen bestimmten Inhalt überflüssig sind, im Gegenteil: Fachdidaktik liefert wichtige Argumente für oder gegen den Einsatz eines methodischen Vorgehens. Diese Argumente muss man kennen – um sich dann begründet für oder gegen eine Methode entscheiden zu können, je nach Kontext.

Eine Methode ist nur eine Methode

An dieser Stelle möchte ich  etwas zu meiner persönlichen Einstellung zum Flipped Classroom sagen. Kann man überhaupt eine Einstellung zu Methoden haben? Das kommt mir komisch vor.  Methoden sind doch nur Methoden. Trotzdem habe ich den Eindruck, mir wird eine unterstellt. Ich sei ein „Verfechter“ der Methode, ich sei ein „Protagonist“ oder gar ein „Missionar“. Das empfinde ich nicht so. Ich setze die Methode in meinen eigenen Vorlesungen ein und habe sie dort für mich weiterentwickelt. Ich habe Erfahrungen gesammelt, über die ich gebloggt habe, und ich habe ein Gespür dafür entwickelt, was funktioniert und was nicht. Das alles teile ich in Vorträgen und Workshops mit, wenn ich die Methode vorstelle. Und ich stelle dabei immer heraus, dass Flipped Classroom nicht die beste Methode ist und ich nicht falsch verstanden werden will: Ich präsentiere die Methode immer mit all ihren Vor- und Nachteilen. Mein Ziel in Vorträgen ist, die Methode vorzustellen, damit die Zuhörer/innen sich anschließend für oder gegen die Methode entscheiden können und dafür Argumente haben. Wenn ich Workshops gebe, dann lasse ich die Teilnehmer/innen  überlegen, wie man die Methode auf ihren eigenen Kontext übertragen könnte und ob das überhaupt sinnvoll ist. Und nicht selten kommt dabei heraus, dass die Methode in diesem oder jenem Kontext wahrscheinlich nicht geeignet ist.

Genauso wenig bin ich übrigens ein Verfechter des Einsatzes digitaler Medien und ich halte digitale Medien auch den analogen nicht grundsätzlich für überlegen (Irrtum Nr. 6). Ich unterstreiche dabei immer das Wörtchen grundsätzlich. Manchmal sind sie es, manchmal nicht. Es kommt eben auf den Kontext an.

Lehrpersonen müssen sich begründet für eine Methode entscheiden können. Dazu müssen sie verschiedene Methoden kennen. Ich stelle Flipped Classroom vor, damit sie eine weitere Methode kennen, für oder gegen die sie sich entscheiden können. Axel Krommer schreibt in seinem Kommentar zu Michas Blogbeitrag: „Ich finde es großartig, dass Christian Spannagel auf seinem Blog die Bühne für eine Fundamentalkritik des Flipped Classrooms bereitet und damit zu erkennen gibt, dass ihm vor allem die Sache und nicht persönliche Interessen am Herzen liegen.“ Das ist zwar sehr nett von Axel formuliert, aber gewundert habe ich mich trotzdem ein bisschen: Ich dachte eigentlich, die ganze Zeit über schon zu erkennen geben zu haben, dass mir die Sache am Herzen liegt.

Bestimmt kommt der Eindruck, ich sei ein „Verfechter“, daher, dass ich anfangs sehr euphorisch über den Flipped Classroom in meinen eigenen Vorlesungen berichtet habe. Ich bin also vielleicht selbst schuld, dass ich anfangs überwiegend die Vorteile herausgestellt habe. Ich hielt die Methode für eine großartige Bereicherung für meine Vorlesungen und für eine tolle Entdeckung.  Das ist aber schon fünf Jahre her (O Gott, ich werde alt!), und mittlerweile hat sich doch einiges getan. In diesen Jahren gab es genug Anlässe, die Methode tiefer zu durchdenken und Vor- und Nachteile zu erörtern. Einige dieser Anlässe führe ich jetzt im Folgenden an und gehe dabei auch auf Michas Blogbeitrag ein (wird auch Zeit!). Ein kurzes Fazit schon vorab: Micha liefert sehr gute mathematikdidaktische Argumente (die mir nicht neu sind und die ich mir auch schon länger zu eigen gemacht habe, mehr unten). Diese Argumente musst jeder Mathematiklehrer und jede Mathematiklehrerin kennen. Allerdings teile ich nicht die Position, dass damit der Flipped Classroom für den Mathematikunterricht in der Sekundarstufe I grundsätzlich ungeeignet ist. Es gibt Kontexte, in denen passt er nicht (und solche beschreibt Micha), und es gibt Kontexte, in denen passt er. Wir sollten also keine Positionen für oder gegen die Methode einnehmen, sondern sachlich überlegen, wo sie passt. Fundamentalkritik ist für mich genau so zweifelhaft wie Missionarstätigkeit.

Im Folgenden möchte ich meine Antwort auf Michas Beitrag anhand von drei Argumenten strukturieren. Diese sind:

  • Fachdidaktisches Argument: Mathematikunterricht ist nicht nur Begriffslernen
  • Professionalisierungsargument: Flipped Classroom als Türöffner
  • Implementierungsargument: Methoden können gut oder schlecht umgesetzt werden

Ich beginne mit dem fachdidaktischen Argument:

Fachdidaktisches Argument: Mathematikunterricht ist nicht nur Begriffslernen

Micha bezieht sich in seinem Beitrag inhaltlich im Wesentlichen auf Begriffslernen. Aus fachdidaktischer Sicht ist es wesentlich besser, Schülerinnen und Schüler zu Beginn mit Beispielen und Gegenbeispielen arbeiten zu lassen und dabei die Eigenschaften eines Konzepts selbst zu entdecken, als ihnen eine Definition des Konzepts vorzugeben. Man gebe ihnen Vierecke, von denen einige Parallelogramme sind und einige nicht, und lasse diese von den Schüler/innen zunächst einmal sortieren. Anschließend kann man mit ihnen besprechen, warum sie die einen Vierecke zusammengepackt haben und die anderen nicht. Die Schüler/innen müssen dann versuchen zu begründen, warum diese Vierecke „zusammenpassen“ und arbeiten dabei selbst die Eigenschaften eines Parallelogramms heraus. Sie haben durch den Sortiervorgang die definitorischen Eigenschaften von Parallelogrammen selbst durchdrungen, zunächst intuitiv, dann wird das (gemeinsam und angeleitet) versprachlicht. So sieht verständnisorientierter Mathematikunterricht aus, wenn Begriffe erarbeitet werden. Micha hat vollkommen Recht.

Es gibt aber noch andere Lernziele im Mathematikunterricht als Begriffe zu lernen. Ein weiterer wichtiger Bereich ist Problemlösen. Problemlösen an sich ist schon ein vielschichtiges Konzept, das unterschiedlich verstanden wird. Im Folgenden beziehe ich mich nicht auf das Lösen offener Probleme (auch wichtig), sondern auf das Lösen einer Klasse von Probleme, für die es ein Verfahren gibt. Ein Beispiel hierfür ist das Lösen linearer Gleichungssysteme, für das mehrere Lösungsverfahren existieren (Einsetzungs-, Gleichsetzungs- und Additionsverfahren). Diese Art des Problemlösens entspricht ziemlich genau dem, was Psycholog/inn/en unter Problemlösen verstehen: Es gibt einen Ausgangszustand (Gleichungen), einen Zielzustand (Lösung), und ich lerne ein Verfahren, wie ich vom Start- zum Zielzustand gelange. Ich beginne beim Ausgangszustand, entscheide mich für Verfahren (je nach Situation), und versuche dabei, sukzessive zum Zielzustand zu gelangen. Es gibt ein ganzes Forschungsgebiet in der Psychologie zum Problemlösen, das auch die Mathematikdidaktik aufgegriffen hat: worked examples, zu deutsch Lernen mit Lösungsbeispielen. Grundprinzip: Ich zeige das Verfahren zunächst an einem Lösungsbeispiel. Die Schülerinnen und Schüler übertragen das Verfahren anschließend auf ähnliche Probleme (d.h. auf vorgegebene Ausgangszustände). Ein Übergangsformat sind completion problems, bei denen die Schüler/innen zunächst nicht nur den Ausgangszustand erhalten, sondern als Hilfe bereits eine Teillösung, die sie vervollständigen müssen. Das Lernen mit Lösungsbeispielen ist bestens erforscht. Es gibt zahlreiche Arbeiten im Gebiet der Cognitive Lead Theory darüber, wie worked examples gestaltet sein müssen. Es wurde der expertise reversal effect entdeckt, der besagt, dass insbesondere Novizen von Beispielen profitieren. Summa summarum kann man den Forschungsstand folgendermaßen zusammenfassen: worked examples sind ein effizientes und effektives Format, mit dem Anfänger/innen in einem bestimmten Bereich das Lösen eines Problems einer bestimmten Klasse von Problemen lernen können. Sehr passend dazu ist auch das cognitive apprenticeship model (deutsch: Modell der Kognitiven Meisterlehre), das am klassischen Handwerk ansetzt und dieses auf kognitive Problemlöseprozesse überträgt. Wenn ein Schneiderlehrling lernen soll, ein Hemd zu schneidern, wird der Meister ihm zunächst das Verfahren vorführen (worked example, Lernen am Modell). Bei kognitiven Prozessen, wie man sie in der Mathematik findet, muss der „Meister“ dabei seine Gedanken externalisieren, damit der „Lehrling“ sie auch mitbekommt (daher kognitive Meisterlehre). Anschließend geht der Lehrling selbst ans Schneidern. Vermutlich bekommt er dabei noch nicht den Auftrag, ein ganzes Hemd zu schneidern, sondern er soll erst mal einen Ärmel an einen Rumpf annähen (scaffolding, bzw. completion problem). Der Meister schaut ihm dabei über die Schulter, unterstützt und gibt Feedback. Je besser der Lehrling wird, umso komplexer werden die Aufgaben, und umso mehr zieht sich der Meister zurück.

Übertragen auf das Lösen von Gleichungssystemen könnte das bedeuten: Zunächst wird den Schüler/innen gezeigt, wie man ein bestimmtes Verfahren einsetzt (worked example). Anschließend lösen die Schülerinnen und Schüler ähnliche Probleme, zunächst mit einer vorgegebenen Struktur (completion problem), anschließend immer komplexer werdend. Das worked example kann dabei zu Hause durchgearbeitet werden, und ein Video ist im Gegensatz zu einem schriftlichen Beispiel dafür besonders geeignet, weil man darin den Problemlöseprozess in seinen einzelnen Schritten sehr gut zeigen kann. Im Unterricht bleibt dann mehr Zeit für das Anwenden des Verfahrens durch die Schüler/innen, die sich dabei gegenseitig helfen und von der Lehrperson unterstützt werden können. Für Problemlöseprozesse dieser Art ist Flipped Classroom sehr wohl sehr gut geeignet.

Ähnliche Problemlöseverfahren sind beispielsweise die Herleitung und Anwendung der Formel zur Lösung quadratischer Gleichungen (pq-Formel oder Mitternachtsformel) oder die Umwandlung der allgemeinen Form in die Scheitelpunktform bei quadratischen Funktionen. In der Sekundarstufe 2 (darauf bezieht sich Micha nicht, trotzdem hier Beispiele) sind das etwa die Anwendung verschiedener Ableitungsverfahren oder das Beweisverfahren der vollständigen Induktion.

Ich kenne die Gegenargumente: Man kann die Schülerinnen und Schüler das Verfahren doch selbst entdecken lassen. Kann man versuchen, muss man aber nicht. Es ist bei manchen Verfahren hingegen schwierig und aufwändig, sie selbst zu entdecken, und selbst unter Anleitung ist die Gefahr groß, dass schwächere Schülerinnen und Schüler scheitern. Vielleicht wird man das Verfahren gemeinsam am Anfang einer Stunde an der Tafel mit den Schülerinnen und Schülern im Unterrichtsgespräch erarbeiten. Wie viel kommt dabei vom einzelnen Schüler? Wie viel ist vom Lehrer dabei bereits vorgegeben? Werden bestimmte Beiträge von Schüler/innen an entsprechenden Stellen im Verfahren erwartet, und wer gibt diese Beiträge? Nur die guten Schüler/innen? Wie viele werden dabei abgehängt? Wie viel ist daran dann tatsächlich selbst entdeckt? Ich halte es für ehrlicher und klarer, einen bereits im Vorfeld sowieso festgelegten Weg ausführlich und gut erklärt vorab (z.B. in Form eines Videos) zu geben. Man gewinnt dadurch mehr Zeit im Unterricht für das Üben des Verfahrens durch die Schülerinnen und Schüler und mehr Raum für Hilfe und Unterstützung. Denn eins ist klar: Verständnis kommt bei vielen erst in dieser Phase.

Wer hingegen die Haltung hat, alles müsse selbst entdeckt werden, begeht meiner Ansicht nach einen ähnlichen Fehler wie Personen, die Flipped Classroom für die Methode halten. Was nicht selbst entdeckt werden kann oder muss, kann und darf auch erklärt werden. Es kommt darauf an, zu entscheiden, wann das angebracht ist und wann nicht. Und wenn man sich für die Erklärung entscheidet, dann mag Flipped Classroom eine geeignete Methode sein.

Es gibt natürlich auch zahlreiche Problemlöseverfahren, die besser selbstständig erarbeitet werden. Ein Beispiel sei die Addition von Brüchen. Natürlich lässt man Schülerinnen und Schüler hier erst mal handelnd Erfahrungen machen (beispielsweise durch Legen von Bruchrechenplättchen), um anschließend über Bilder auf die symbolische Ebene zu wechseln (EIS-Prinzip nach Bruner). Natürlich führt man nicht die Addition von Brüchen mit einem Video ein, in der man das Verfahren symbolisch erklärt. Eine Unterrichtseinheit zum Bruchrechnen zieht sich aber länger hin. Warum nicht zu einem späteren Zeitpunkt zur Vorbereitung nochmal eine zusammenfassende Erklärung mit Bildern und Symbolen in einem Video als Vorbereitungsaufgabe auf die nächste Übungsstunde geben, die all das zusammenfasst, was in den bisherigen Unterrichtsstunden gemeinsam erarbeitet wurde?

Den Ansatz des flexiblen Einsatzes der Methode haben wir auch im Projekt Flip your Class! verfolgt. Es ging in dem Projekt nicht darum, den Flipped Classroom im traditionellen Sinn auf alle möglichen Unterrichtszenarien zu übertragen. Im Sinne einer Lernprozessgestaltung sollte zunächst überlegt werden, in welche Phasen sich ein bestimmter Lernprozess aufteilt, um anschließend zu überlegen, ob an bestimmten Stellen des Lernprozesses digitale Medien wie Videos geeignet sind. Im Übrigen habe ich in dem verlinkten Beitrag zur Lernprozessgestaltung im Juni 2015 schon ähnlich argumentiert wie Micha jetzt (durchaus angeregt durch Diskussionen mit Micha damals bei der Mathe-MOOC-Produktion). Und abschließend zu diesem Abschnitt sei noch angemerkt, dass es noch viele Unterrichtsfächer außer Mathematik gibt, in denen zahlreiche weitere passende Situationen für den Einsatz von Flipped Classroom zu finden sind.

Bei Diskussionen zu Flipped Classroom wird immer die Frage gestellt, ob man nur einzelne Unterrichtseinheiten flippen sollte oder den ganzen Unterricht. Die bisherigen Überlegungen sprechen für ersteres. Trotzdem gibt es auch ein Argument dafür, dass die komplette Umstellung auf Flipped Classroom in bestimmten Kontexten sinnvoll sein kann. (Nochmal: Es kommt auf den Kontext an.) Dazu jetzt:

Professionalisierungsargument: Flipped Classroom als Türöffner

Das Wesentliche am Flipped Classroom ist nicht Videolernen oder Onlinelernen. Es geht nicht um Lernen mit digitalen Medien. Es ist kein E-Learning-Konzept, im Gegenteil: Das Wesentliche am Flipped Classroom ist die Nutzung der Präsenzzeit (d.h. im Schulkontext: der Unterrichtsstunde). Sie soll so schülerzentriert wie möglich gestaltet sein. Es ist eigentlich ein Präsenzkonzept. Die Präsenz soll für die gemeinsame Arbeit verwendet werden. Wenn „Inputphasen“ am Anfang einer Stunde Zeit für Interaktion „wegnehmen“, dann bietet es sich an, diese in die Vorbereitungszeit vorzuverlagern. Und gemeinsame Präsenszeiten sind dann besonders wertvoll, wenn alle vorbereitet kommen. Amat victoria curam. Soviel zur Grundidee.

Wenn Lehrerinnen und Lehrer bereits mit anderen Methoden einen schülerzentrierten (Mathematik-)Unterricht durchführen: Perfekt! Sie brauchen sich wahrscheinlich gar nicht mit Flipped Classroom befassen, denn sie haben gar nicht die Notwendigkeit, ihren Unterricht schülerzentrierter zu gestalten. Es ist aber nun so, dass viele Lehrerinnen und Lehrer immer noch einen sehr lehrerzentrierten Unterricht machen, mit Lehrervorträgen zu Beginn einer Stunde und mit einem hohen Redeanteil der Lehrperson, in etwa so wie Micha das beschreibt. Für diese Lehrerinnen und Lehrer kann Flipped Classroom einen guten Einstieg in einen schülerzentrierteren Unterricht bieten: In einem ersten Schritt werden die „Inputphasen“ per Video nach Hause vorgelagert. Wer dies erstmals tut, findet sich anschließend mit einer Unterrichtsstunde konfrontiert, in der nun schülerzentrierter gearbeitet werden muss. Vielleicht fühlt man sich als Lehrerin oder Lehrer dann zunächst unsicher, weil man flexibler agieren muss und nicht alles durchplanen kann. Mit der Zeit wird man dann aber sicherer und lernt das schülerzentrierte Arbeiten im Unterricht zu schätzen. Und dann beginnt vielleicht ein Prozess, den ich in Gesprächen mit Lehrerinnen und Lehrern, die Flipped Classroom durchführen, schon oft bemerkt habe: Man beginnt sich an seinen Videos zu stören. „Ich erkläre noch zu viel, das kriegen meine Schüler selbst raus.“ Und jetzt beginnt man, sich von dem starren Flipped-Classroom-Konzept zu lösen, beginnt Erklärungen durch Selbstentdeckungsaktivitäten auszutauschen und nähert sich so sukzessive den Überlegungen, die oben im Kontext der Lernprozessgestaltung beschrieben wurden. Flipped Classroom schafft sich dann selbst dort ab, wo er nicht passt, und bleibt vielleicht dort bestehen, wo er passt. Die Methode hat dann wie eine Art Katalysator zum Umdenken und Umgestaltungen des Unterrichts gewirkt. Sie hat Prozesse der weiteren Professionalisierung der Lehrperson angestoßen. Dabei müssen Haltungen und Einstellungen geändert werden – sehr hartnäckige Kameraden, an denen durch fachdidaktische Fortbildungen kaum gekratzt wird. Letztlich ist Flipped Classroom dann eine Methode, in der die Lehrperson Formen des schülerzentrierten Arbeitens für sich selbst entdeckt. 😉

Wenn eine Lehrperson von einem lehrerzentrierten Unterricht zunächst komplett auf Flipped Classroom umsteigt, ist mathematikdidaktisch noch nicht viel gewonnen. Es bleibt das alte Muster „Erklären – Üben“ bestehen. Es ist nicht viel gewonnen. Aber ein wenig. Es ist mehr Zeit gewonnen für das Üben gemeinsam mit anderen und mit der Lehrperson. Und es birgt die Chance, Umdenkprozesse bei der Lehrperson hervorzurufen, die zu weiteren Schritten der eigenen Unterrichtsentwicklung führen. Insofern ist diese „Zwischenphase“ der Unterrichtsentwicklung fachdidaktisch noch nicht gut (also: nicht besser und nicht schlechter als vorher), aber sie birgt große Chancen für die Weiterentwicklung hin zu gutem Unterricht. Und wie gesagt: Diese Erfahrungen haben schon einige Lehrerinnen und Lehrer gemacht, die Flipped Classroom einsetzen, und ich habe das auch für meine Vorlesungen so empfunden (Flipped Classroom nur ein Übergangsmodell?). Flipped Classroom kann ein Türöffner sein, wie Sebastian Schmidt das in seinem Blogbeitrag Projektende Flipped Classroom – ein Fazit beschreibt.

Implementierungsargument: Methoden können gut oder schlecht umgesetzt werden

Micha bezieht sich auf Videobeispiele von „Apologeten“ des Flipped Classroom, die mathematikdidaktisch fragwürdig sind. Kein Zweifel: Man kann die Methode gut oder schlecht durchführen, wie jede Methode. Die Tatsache, dass man viele Videobeispiele findet, die einem fachdidaktisch die Fußnägel kräuseln, bedeutet nicht, dass die Methode Mist ist. Es bedeutet, dass sie falsch eingesetzt wurde. Genauso wird das von Micha beschriebene Vorgehen beim Begriffslernen bestimmt landein landaus in zahlreichen Fällen miserabel durchgeführt. Nur: Darüber findet man nichts im Netz (weil das nicht kommuniziert wird). Und ist dadurch diese Art des Begriffslernens schlecht, nur weil viele sie schlecht durchführen? Sicher nicht.

Ein paar Kommentare zu Detailargumenten hinsichtlich der Umsetzung des Flipped Classroom von Micha:

  • Erlärmirnix: Immer dasselbe. Natürlich bringt es nichts, sich ein Video immer wieder anschauen zu können, das man einfach nicht versteht. Aber es bringt etwas, ein Video oder einen Ausschnitt nochmal anschauen zu können, wenn man beim ersten Mal etwas nicht verstanden hat, weil man beim ersten Mal den Überblick über den Gesamtprozess noch nicht hatte, beim zweiten (selektiven) Schauen aber entsprechende Lücken füllen kann. Wer mit einem Zugang grundsätzlich Schwierigkeiten hat, dem bringt eine Wiederholung desselben aber selbstverständlich nichts. Das ist auch im realen Unterricht so. Daher müssen in bestimmten Fällen verschiedene Zugänge gegeben werden (Redundanz – siehe Michas Beitrag). Das ist nicht Flipped-Classroom-spezifisch, sondern unabhängig von der Methode ein Grundprinzip. Und natürlich können gute Videos auch einer dieser Zugänge sein. Sie sind kein Redundanzkiller, wenn sie gut gemacht sind.
  • Erklärmirnix: Nachhaltigkeit. „Auf jede Erarbeitung folgt eine Erstferstigung.“ Ich stimme vollkommen zu. Ob aber eine Erstfestigung nur unter Betreuung möglich ist oder auch alleine, würde ich vom Kontext abhängig machen, beispielsweise vom Inhalt, aber auch von der Leistungsfähigkeit der Schülerinnen und Schüler in der spezifischen Klasse. Ich bin nicht der Meinung, dass Schülerinnen und Schüler das niemals alleine können, wenn sie geeignete Aufgaben und Hilfestellungen zur Hand haben. Wir sollten es den Kindern und Jugendlichen in passenden Kontexten zumindest einmal zutrauen und sie dabei unterstützen, sich selbstständig in einen kleinen Bereich einarbeiten zu lernen. Genau das sollen sie doch können, wenn sie die Schule verlassen? Oder sollen wir das allen anderen Fächern überlassen, nur nicht dem Fach Mathematik?

Lasst uns also doch nicht schlechte Mathevideos im Netz oder schlechte Flipped-Classroom-Beispiele als Argument dafür hernehmen, dass die Methode Flipped Classroom prinzipiell ungeeignet ist. Lasst uns lieber die Chance nutzen, dass Prozesse, die früher im Verborgenen im Klassenzimmer stattgefunden haben, nun öffentlich werden (beispielsweise dadurch, das Lehrerinnen und Lehrer Videos ins Netz stellen). Und lasst uns dann anhand der konkreten Beispiele gemeinsam diskutieren, warum das schlecht ist und wie man es besser machen könnte. Das hilft nicht nur der „Community“, sondern insbesondere auch der Lehrperson, die das Video online gestellt hat. Alle „Apologeten“ des Flipped Classroom, die ich bislang kennen gelernt habe, waren extrem reflektierte Personen, die unzufrieden mit ihrem bisherigen Unterricht waren, und die das extreme Bedürfnis hatten, ihren Unterricht qualitativ besser zu machen. Viele dieser Personen sind mit Sicherheit dankbar für Rückmeldungen und Kritik, weil sie selbst ein permanentes Unbehagen umhertreibt. Sie trauen sich, ihren Unterricht öffentlich zu machen, auch auf die Gefahr hin, dass er schlecht ist. Ich finde das sehr mutig. Und wir sollten es durch eine konstruktive Diskussion würdigen und nicht durch Pauschalaussagen wie „Alle Mathevideos im Netz sind fachdidaktisch Mist, also ist Flipped Classroom Mist“. Eine solche Diskussion wird lange dauern, aber was haben wir zu verlieren? Manch einer könnte sagen, dass man nun schlechte Unterrichtsbeispiele im Netz findet, an denen sich andere orientieren und dann auch schlechten Unterricht machen. Ich würde sagen: Früher hat man sich halt am schlechten Unterricht seiner Mentorinnen und Mentoren orientiert, ohne Möglichkeit der öffentlichen Diskussion. Offen gelegte schlechte Umsetzungen sind besser als geheime und helfen dabei gemeinsam zu verstehen, wie man ein Konzept besser durchführen kann.

Lasst uns doch also bitte die „Befürworter-Gegner-Positionen“ ablegen und zu einer konstruktiven, sachlichen Diskussion übergehen, die so viel wertvolle Potenziale birgt!

Ergänzung: Mir ist gerade bewusst geworden, dass dieser Beitrag – ähnlich dem Beitrag von Sebastian Schmidt – so etwas wie einen Schlusspunkt für meine Arbeit mit dem Flipped Classroom bildet. Seit ziemlich genau sechs Jahren beschäftige ich mich jetzt intensiv mit dem Thema, und unser Schulprojekt Flip your class! neigt sich nun auch dem Ende zu. Der Beitrag hier ist für mein Fazit einer langen und intensiven Beschäftigung mit der Methode. Ich ziehe mich aus der Diskussion nicht zurück, aber werde mich auf neue Felder konzentrieren: Die Bereiche Forschung, Nachwuchsförderung, Transfer, Open Science, Digitalisierung, IT und Campusmanagement an unserer Hochschule mitzugestalten. Insofern werde ich für mich das Forschungsthema Flipped Classroom mit diesem Beitrag (und dem Buch, das wir im Rahmen des Flip your Class!-Projektes noch veröffentlichen werden), beschließen.  

 

Nicht flippig genug

Veröffentlicht: Freitag, Juni 16, 2017 in FlippedClassroom, Gastbeitrag

Bei diesem Artikel handelt es sich um einen Gastbeitrag von Michael Gieding. Micha ist ein Kollege an der PH Heidelberg, mit dem ich oft intensive Diskussionen über die Methode Flipped Classroom führe. Bei diesem Beitrag handelt es sich um eine Kritik des Flipped Classroom, die ich hier gerne veröffentliche. Ich freue mich auf die Diskussion in den Kommentaren.

Prolog: Nürnberg
Nürnberg ist bekannt für seine Rostbratwürste:

Nürnberger Rostbratwürste
Foto von Schlurcher / CC-BY-3.0 & GDFL 1.2

Nur Würste, die im Stadtgebiet von Nürnberg nach einer bestimmten Rezeptur produziert werden, dürfen die Bezeichnung „Original Nürnberger Rostbratwurst“ bzw. “ Nürnberger Bratwurst“ tragen, welche als Herkunftsbezeichnung durch die EU geschützt ist. Spricht man in einem Grillkontext von „Nürnbergern“, weiß jeder Bescheid: Korrekt gegrillt werden sie auf Buchenholz. Nur Banausen verwenden Holzkohle oder braten die „Nürnberger“ gar in der Pfanne. Man kann sagen, dass „Nürnberger“ ein Erfolgskonzept ist. Aus diesem Grunde steht das Rezept ihrer Herstellung fest und wird nicht mehr geändert. Was gut ist bleibt gut.

Weniger erfolgreich gestaltet sich eine pädagogische Fiktion aus Nürnberg, der sogenannte Nürnberger Trichter:
„Fehlt dir’s an Weisheit in manchen Dingen, lass dir von Nürnberg den Trichter bringen.“

Nuremberg Funnel - ad stamp 1910.jpg
von Unbekannt / gemeinfrei

Der Begriff „Nürnberger Trichter“ geht auf den Nürnberger Dichter Georg Philipp Harsdörffer (1607–1658) zurück. Er war der Meinung, dass Poesie gelernt und gelehrt werden könne, ohne dass man hierfür die lateinische Sprache verwenden müsse. Seine Gedanken fasste er in einem Buch mit dem Titel „Poetischer Trichter“ zusammen.
Heute verbindet man mit dem geflügelten Wort des „Nürnberger Trichters“ eher die Idee, jedem möglichst ohne großen Aufwand, quasi durch Handauflegen, effizient etwas beizubringen. Was das „Perpetuum Mobile“ für den Physiker ist der „Nürnberger Trichter“ für den Pädagogen. Man weiß seit langem, dass es kein Perpetuum Mobile geben kann. Selbiges gilt für die Wissensvermittlungsmaschine „Nürnberger Trichter“. Eigentlich wissen das Pädagogen, Didaktiker und Lehrer auch.

Flipped Classroom im Kontext der vorliegenden Ausführungen

„Möchtest Du in einer spiegelbildlichen Welt leben, Kitty? Vielleicht würdest Du dort keine Milch bekommen können oder die Spiegelbildmilch würde Dir nicht schmecken.“
Alice (Aus „Allice im Wunderland“ von Lewis Carroll)

Klassischer Mathematikunterricht sieht in der Regel so aus, dass die Lehrperson zunächst 10 bis 20 Minuten einen Input in Form eines Lehrervortrages gibt um danach  mehr oder weniger komplexe Aufgabenblätter zu verteilen, die von den Schülerinnen und Schülern erwarten, dass sie das im Lehrervortrag Gehörte zur Anwendung bringen. Eine weitere Übungsphase wird dann als sogenannte Hausaufgaben in den häuslichen Bereich der Schülerinnen und Schüler verlagert.

Eine „modernere“ Variante dieser Unterrichtsgestaltung besteht darin, die Inputphase in den häuslichen Bereich auszulagern, um in der Schule nur noch zu üben. Per Video schauen sich die Schülerinnen und Schüler jetzt den Lehrervortag zu einem individuell von ihnen gewählten Zeitpunkt zu Hause an, um mit dem somit vorab erworbenen Wissen  zum Üben in die Schule zu kommen.

Die Vorteile liegen auf der Hand, die Schülerinnen und Schüler können dem Lehrervortag in dem ihnen jeweils angemessenen Tempo folgen, sollten sie etwas nicht verstanden haben, spulen sie einfach zurück und hören sich den unverstandenen Teil des Vortrages noch einmal an:

WIEDERHOLE

höre dem Lehrer zu

BIS verstanden

Im Gegenzug wird die Übungsphase in der Schule ausgedehnt, was den Vorteil mit sich bringt, dass die Lehrperson mehr Schülerinnen und Schüler individuell beim Üben unterstützen kann.

Ganz nebenbei hat man auch die Digitalisierung mit im Boot der Unterrichtsgestaltung. Moderner geht es nicht!

Die folgenden Ausführungen beziehen sich explizit auf den Mathematikunterricht allgemeinbildender Schulen und dort insbesondere auf die Sekundarstufe 1. Zur Sinnhaftigkeit des Prinzips Flipped Classroom in Bezug auf andere Unterrichtsfächer wie etwa Geschichte will der Autor nichts sagen. Selbiges gilt für die Mathematikausbildung an Universitäten und Hochschulen.

Erklärmirnix als Unterrichtsprinzip
Wie vorab erläutert unterscheidet sich ein Unterricht nach dem Prinzip FC und einem traditionellen Unterricht mit Lehrervortrag nur durch die Auslagerung des Vortrages in den außerunterrichtlichen Bereich der Schülerinnen und Schüler. Aus theoretischer Sicht kann dieses Auslagern gewisse Vorteile für den Lernprozess mit sich bringen. Warum sollte man diesen mehr oder weniger unkreativen Bereich der Wissensaufnahme nicht auch in den außerschulischen Bereich verlagern? Jede Lehrperson, die während eines Vortrages den Zuhörerinnen und Zuhörern in die Augen schaut, wird wissen, dass gerade eine solche Phase Gift für einen guten Unterricht ist: „Wenn alles schläft und einer spricht, dann haben wir gerade Matheunterricht.“

Nun wären viele Kolleginnen und Kollegen schon zufrieden, wenn bei ihrem Vortrage Ruhe herrscht, in der Realität wird jeder Vortrag von regelmäßigen Unterbrechungen  begleitet, „Sitz still, hör zu, denk mit!“. Vielleicht ist aber auch der Vortrag nicht das geeignete Mittel der Wissensvermittlung bezüglich der Mathematik? Der Autor wird im Folgenden zumindest für gern gewählte mathematische Unterrichtsvortragsthemen zeigen, dass Vorträge das falsche Mittel bezüglich der Vermittlung von Wissen und Können zu diesen Themen im Kontext der allgemeinbildenden Schule sind.

Ohne den Einspruch seiner Mutter wäre der Autor dieser Zeilen nicht Lehrer für Mathematik und Physik, sondern für Deutsch und Geschichte geworden. Die Mutter des Autors ist Lehrerin für letztere Fächer und warnte ihren Sohn: mach lieber Mathe, unterrichtet sich einfacher und mit weniger Aufwand. Danke Mutter, du hattest Recht.

Mathematik ist wohl das Fach, das sich am einfachsten unterrichten lässt!

Der Grund dafür: Mit vergleichsweise geringem Aufwand lassen sich sehr schnell geeignete Schülertätigkeiten generieren, mittels derer die Schülerinnen und Schüler sich selbst mit dem Unterrichtsgegenstand auseinandersetzen. Nichts ist einfacher, als im Mathematikunterricht den Schülerinnen und Schülern Erfolgserlebnisse zu verschaffen! Beachte nur ein grundlegendes Prinzip: Halte keine Vorträge und organisiere so viele Schülertätigkeiten wie möglich. Die Kunst besteht nur darin, das momentane Leistungsvermögen deiner Schülerinnen und Schüler zu treffen und dann nicht zu vergessen, sie für ihr Engagement zu loben. Schaut mal: Das habt Ihr alleine herausgefunden.

Real existierender Mathematikunterricht sieht in der Regel anders aus. Bei seinen Unterrichtsbesuchen im Rahmen der Praktikumsbetreuung von angehenden Mathematiklehrerinnen und –lehrern sind die Schülerinnen und Schüler von den 45 Minuten einer Unterrichtsunde geschätzte 10 Minuten wirklich selbst aktiv (Sekundarstufe 1, Real- und Werkrealschulen in BW). Den Rest der Zeit lassen sie sich irgendwie berieseln oder sind mit irgendwelchen Dingen beschäftigt, die nichts mit dem Unterricht zu tun haben. Die Effizienz dieses Unterrichtes geht gegen Null.

Natürlich ist es jetzt naheliegend, den Teil des Unterrichts auszulagern, der offenbar Tätigkeiten nur in begrenztem Maße zulässt: Der Vortrag des Lehrers.

Was aber, wenn die Idee etwas vorzutragen bezüglich der Vermittlung von Mathematik im  Rahmen allgemeinbildender Schulen schon das Problem ist? Kann ich Mathematik eigentlich erklären? Nun, bei ganz einfachen Kontexten sollte das wohl sinnvoll und möglich sein. Erklärungen sind doch wohl sicherlich dort nötig und sinnvoll, wo es um Definitionen geht: Eine Raute ist ein Vierecke mit vier gleichlangen Seiten. Muss man doch sagen und erklären, ODER?

Erklärmirnix: Begriffe
Wichtige Begriffe, mit denen die Schülerinnen und Schüler im Mathematikunterricht vertraut werden sind etwa: Zahl, Primzahl, gerade Zahl, ungerade Zahl, Quadrat, parallel, senkrecht, Raute, gleichschenkliges Dreieck, größter gemeinsamer Teiler, kleinstes gemeinsames Vielfaches , Kegel, Volumen, Flächeninhalt. Einige Begriffe werden geklärt, andere auf einer gewissen intuitiven Stufe verwendet. In der Regel läuft das so ab, dass die Lehrperson einen Prototypen eines Begriffsrepräsentanten mitbringt und den Schülerinnen und Schülern erklärt, dass sowas etwa Quadrat heißt und diese und jene Eigenschaften hat. Zum Schluss kommt eine Definition ins Merkheft: Ein Quadrat ist ein Rechteck mit gleichlangen Seiten. LERNEN!

Schauen wir uns mathematische Begriffe mal genauer an. Was ist eigentlich ein mathematischer Begriff? Machen wir es konkret mit dem Begriff des Trapezes. Bezüglich der Klärung, was ein Trapez ist, gehen wir von einer gewissen bezüglich der Begriffsbildung relevanten Ausgangsmenge aus, etwa von der Menge aller Vierecke. (Natürlich könnten wir auch von der Menge aller Mengen ausgehen, aber dass die Betrachtung aller Zapfsäulen jetzt eher irrelevant ist, dürfte klar sein.) Diese Ausgangsmenge wird nun in genau zwei disjunkte Teilmengen eingeteilt, deren Vereinigung wiederum die Menge aller Vierecke ergeben: Trapeze und nicht Trapeze.

Für ein grundlegendes Verständnis der Schülerinnen und Schüler für den Begriff des Trapezes brauchen wir jetzt viele Repräsentanten und viele Gegenrepräsentanten des Begriffs. Trapeze die jeder Schüler gleich als Trapez einordnen wird wie etwa die gleichschenkligen Trapeze. Trapeze, die man recht bald als Trapeze identifizieren wird. Spezialfälle wie Parallelogramme, Rechtecke, Rauten und Quadrate. Trapeze, die komisch aussehen, wie etwa ganz lang und ganz platt. Und vor allem Gegenbeispiele wie allgemeine Drachen oder nicht konvexe Vierecke. Die Gegenbeispiele sind dabei oft noch wichtiger als Beispiele, weil sie den Begriff hinreichend abgrenzen. Bis dahin und nicht weiter. Dementsprechend brauchen wir Beispiele, die „komisch“ in der Ebene liegen, und Gegenbeispiele, die fast schon ein Trapez sind. Und wir brauchen den Prozess des Ordnens, des Klassifizierens. Liebe Freunde des guten Unterrichts, wollt ihr diesen Prozess durch einen Vortrag illustrieren oder die Schülerinnen und Schüler lieber selbst durchführen lassen? Der Autor sagt: Mittendrin, statt nur dabei (Sport1).

Die Zerlegung einer Menge M in nichtleereTeilmengen, die zueinander jeweils disjunkt sind und deren Vereinigungsmenge wiederum M ist, nennt der Mathematiker eine Klasseneinteilung. Die Idee der Klasseneinteilung ist einer der zentralsten Begriffe der Mathematik u.a. eine Grundlage der Bildung von Begriffen. Begriffsbildung ist die Generierung einer zweilelementigen Klasseneinteilung auf einer gewissen Grundmenge. Der Begriff des Trapezes ist zunächst nichts anderes als die Klasse besonderer Vierecke, die wir irgendwann dann als Trapez bezeichnen und von den übrigen Vierecken abgrenzen werden. Die Bezeichnung selbst ist Tradition, prinzipiell hätten die Dinger auch Lisa-Schultze-Vierecke heißen können.  Begriffsbezeichnungen sind damit Bezeichnungen für Äquivalenzklassen. Die Begriffsbildung selbst ist ein Abstraktionsprozess. Am Ende dieses Prozesses steht eine Bezeichnung, mit der man ein Begriffsverständnis verbindet. Ein Verständnis für den Begriff zu erwerben, heißt diesen Abstraktionsprozess in gewisser Weise nachzuvollziehen. Es ist nicht die Logik, die die Mathematik so schwierig macht, sondern ihre Abstraktheit. Ein Verständnis für einen abstrakten Begriff zu erwerben ist nur durch das eigene Nachvollziehen des Prozesses der Begriffsbildung möglich. Alles andere generiert gefährliches Halbwissen. Nun kann ich Prozesse im Vortrag darstellen, Verständnis wird man nur bei wenigen der Schülerinnen und Schüler vermitteln können, insbesondere dann, wenn das abstrakte Denkvermögen bei den Schülerinnen und Schülern auf der S1 aus entwicklungspsychologischer Sicht noch nicht hinreichend ausgebildet ist.

Die eigene Auseinandersetzung mit dem Gegenstand ist immer sinnvoller, als sich etwas zu dem Gegenstand anzusehen oder nur anzuhören. Im Matheunterricht haben unsere Schülerinnen und Schüler so vielfältige Möglichkeiten selbst tätig zu werden. Sie können Trapeze legen, falten, nachzeichnen, auf Kästchenpapier Vierecke zum Trapez ergänzen … . Wir können ihnen natürlich auch ein Video zeigen:

Liebe Schülerinnen und Schüler, hier ist wieder euer Lehrer mit einem Video. Ihr wisst ja Videos sind gut fürs Lernen. Heute: Trapeze! Gaaaaanz wichtig für die Klausur. Ich hab euch hier eins mitgebracht. Seht ihr, zwei parallele Seiten! Alle Trapeze haben zwei parallele Seiten. Jetzt macht ihr Stop und schreibt auf „Ein Trapez hat …“. …

Da bin ich wieder. Na, habt ihr es richtig geschrieben, ja natürlich, ein Trapez hat zwei parallele Seiten. Das müsst ihr in der Klausur wissen! Lernen!!!! Jetzt zeige ich euch noch wie eine Trapez gezeichnet wird. Das müsst ihr dann auch können in der Klausur. Also aufpassen: …

Und denkt dran, wenn ihr was nicht verstanden habt, wir haben jetzt ja mit den Videos eine Lernmaschine. Einfach nochmal anschauen, solange bis ihr es verstanden habt.

Leser, die glauben, solche Videos gibt es nicht, schauen sich sich die Mathevideos der Apologeten des FC an. Da fragt man sich, wieviel haben diese jungen Lehrer von Mathematikdidaktik verstanden. Dem Autor dienen diese Videos in Didaktikveranstaltungen als Gegenbeispiele für guten Matheunterricht.

Erkärmirnix: Immer dasselbe
Als große Innovation des FC wird hervorgehoben, dass die Schülerinnen und Schüler die Erklärvideos ja solange sich anschauen könnten, bis sie den jeweiligen Kontext verstanden hätten. In der Regel wird es aber so sein, dass Lisa den Stoff auf die dargestellte Weise einfach nicht kapiert. Mehmet kommt mit der Wortwahl im Video nicht zurecht, bei solchen Worten  hat er immer ein ungutes Gefühl. Klaus hat Probleme, das Quadrat, das nach seiner Meinung wie eine Raute aussieht, als Quadrat anzuerkennen. … Schau es dir einfach noch mal an und hör gut zu! Da lassen wir junge Menschen immer wieder gegen die Wand rennen … . Klar, klären wir das dann auf, aber wann. Davor hatten Lisa, Mehmet und Klaus wieder einmal ein Misserfolgserlebnis, naja sie kennen das ja schon. Klar helfen bei ihnen dann die hochgelobten modernen digitalen Videos auch nicht, sie haben halt kein Verständnis für Mathematik.

Hinzu kommen die realen Videos des real existierenden FC. Liebe Freunde des guten Unterrichts, mit diesen Videos ist der Misserfolg für viele Schülerinnen und Schüler vorprogrammiert, mit den Videos kann man Mathematik nicht verstehen. Lasst die Dinger weg und fangt gleich an zu üben, wird einfacher.

Erklärmirnix: Nachhaltigkeit
Eines der grundlegenden Prinzipien des Unterrichtens von Mathematik besteht darin, dass sich einer Erarbeitungsphase immer und zwar wirklich immer und das ohne jede Ausnahme eine Erstfestigungphase anschließen muss. Wer etwa mit der Formulierung des Satzes von Pythagoras seine Unterrichtsstunde beendet, hat nicht verstanden, wie die Vermittlung mathematischen Wissens und Könnens funktioniert. Ohne Erstfestigung fängst du in der nächsten Stunde noch mal an. Das heißt spätestens nach einer halben Stunde des Unterrichts solltest du die Neuerarbeitung hinter dir haben, jetzt muss sich in jedem Fall eine betreute Übungsphase anschließen. Gehe immer davon aus, dass eine Mehrheit deiner Schülerinnen und Schüler nach der Erarbeitung des neuen Stoffs ein gewisses Gefühl für das Neue entwickelt haben, aber da fehlt es an Komplexität, da fehlt es an tieferem Verständnis, da hast du gefährliches Halbwissen mehr noch nicht. Es dabei zu belassen ist fahrlässig. Du hättest dir die Neuerarbeitung klemmen können und besser die schriftliche Division üben lassen können. Probiert es aus: Quadrat wurde wieder einmal eingeführt (Spiralprinzip des MU): Zeigt das Logo vom HSV (Die Raute im Herzen ist ein Quadrat auf einer Ecke.) Schüler: Raute, kein Quadrat.

Noch einmal, weil es so wichtig ist! Auf jede Erarbeitung folgt eine Erstfestigung. Immer, ohne Ausnahme! Alles andere ist sinnlos.

Jetzt schauen wir uns den FC an. Natürlich könnt ihr den Schülern nach dem Video noch ein paar Aufgaben geben. Jeder, der hinreichend mit dem Matheunterricht vertraut ist, weiß, dass die Mehrzahl der Schülerinnen und Schüler diese Aufgaben nicht lösen werden. Da ist jetzt ein Hauch von Verständnis bei den Rezipienten der Videos. Bitte bleibt doch in der Realität. Ihr zeigt ein Video, dass die Schülerinnen und Schüler nur halb verstehen und jetzt kommen unbetreute Aufgaben. Mehr könnt ihr die Schülerinnen und Schüler nicht vor den Kopf stoßen. Mit den Aufgaben muss auch eine Rückkopplung kommen, und zwar eine humane von einem Menschen.

Erklärmirnix: Dynamik und Kreativität der Gruppe
Natürlich könnte man sich FC auch so umgesetzt vorstellen, dass keine Videos zu Hause zu schauen, sondern gewisse Aufgaben zur Selbsterarbeitung zu erledigen sind. Warum sollen die Schülerinnen und Schüler nicht zu Hause mit Stäbchen Vierecke legen und diese ordnen? Imre hat jetzt gerade so ein tolles Viereck gelegt, das schaut aus wie aus Starwars und niemand ist da, dem er es zeigen kann, mit dem er drüber reden kann und kein Lehrer ist da, der Imre lobt und sagt, auch das sind Vierecke, nämlich konkave. Schaut mal, der Imre hat konkave Vierecke entdeckt.

Videokiller: Redundanz
Die Vermittlung von Mathematik bedarf gewisser Redundanz. Ein und derselbe Gegenstand muss aus verschiedenen Perspektiven dargestellt und betrachtet werden. Jeder, der schon mal ein Video eines der zahlreich vertretenen Erklärbären auf YouTube etwa zu bestimmten Funktionen von Photoshop angesehen hat, kehrt reumütig zu RTFM zurück: Zu langatmig, zu umständlich, zu wenig auf den Punkt. Redundanz und Video passen nicht zueinander. Mathematikvermittlung demgegenüber braucht Redundanz … .

Zusammenfassung
Der Autor hält FC für den Mathematikunterricht insbesondere der S1 für weitestgehend ungeeignet.

Epilog: Thüringen
Mit dem Computern haben wir Werkzeuge für den Matheunterricht, die weit über das hinausgehen, was wir uns vor Jahren hätten vorstellen können. Natürlich sind das immer noch keine Nürnberger Trichter, aber wir haben jetzt  Experimentierumgebungen im Matheunterricht. In den 80ern stand in jedem zweiten Artikel zum Rechnereinsatz im Matheunterricht ein Zitat aus Gödel, Escher, Bach von Douglas R. Hofstatter :

„Der Computer ist ein Maggelan’sches Schiff, das uns zu neuen mathematischen Welten trägt.“

Es wäre schön, wenn wir uns daran wieder erinnern würden. Bezüglich der materiellen Voraussetzungen sieht es heutzutage wesentlich besser aus als in den 80ern.

Die Krone der Rostbratwürste sind natürlich die aus Thüringen. Wer etwas auf sich hält, grillt echte Thüringer. Die müssen nun wiederum auf Holzkohle gegrillt werden. Jedes Jahr zu Ende des Sommersemesters veranstaltet das Fach Mathematik an der PH Heidelberg das große Sommergrillen. Die Studentinnen und Studenten kommen aus der bösesten aller bösen Klausuren, feinstes Klosterbier vom Fass  ist eingeschenkt, echte Thüringer warten auf die ersten Abnehmer. Leider hat unser bisheriger Lieferant aus Thüringen sein Geschäft aufgegeben. Wir suchen jemanden, der uns 170 echte Thüringer Rostbratwürste am 28. Juli 2017 zuschickt. Die Thüringer sollten weder gebrüht noch tiefgefroren sein. Natürlich müssen sie gekühlt sein. Dass so etwas geht, zeigte unser früherer Lieferant. Wer weiß Rat?

Der Autor am Grill beim großen Sommergrillen des Faches Mathematik.

 

Etherpads für Gruppenarbeitsphasen

Veröffentlicht: Montag, März 27, 2017 in FlippedClassroom
Schlagwörter:,

Fazit: Etherpads sind ein unglaublich nützliches Werkzeug für die Strukturierung von Gruppenarbeiten in einem Seminar. Man spart damit Zeit für bei den Phasenwechseln – und gewonnene Zeit kann wiederum für inhaltliche Aktivitäten verwendet werden.

Nach Gruppenarbeitsphasen in Lehrveranstaltungen entsteht immer wieder die Schwierigkeit, die Gruppenergebnisse im Plenum effizient zu besprechen. Dabei kann viel Zeit verloren gehen, etwa wenn eine Gruppe ihre Ergebnisse an die Tafel schreibt oder wenn USB-Sticks zum Dozentenrechner getragen werden, um ein digitales Ergebnis zu präsentieren. Außerdem bekommen die Teilnehmer*innen oftmals nicht alle Gruppenergebnisse zu sehen, sondern nur einige wenige – für die Präsentation aller Ergebnisse ist kaum Zeit.

Neben der Möglichkeit, Digitalfotos zu erstellen, sind Etherpads ein tolles Werkzeug, um Gruppenarbeitsphasen effektiver zu gestalten, insbesondere dann, wenn die Gruppenergebnisse Texte oder Textfragmente sind, und wenn die Gruppen unterschiedliche Inhalte bearbeiten und am Ende der Arbeitsphase alles zusammengetragen werden soll.

Beispiel: In meinem Informatikdidaktikseminar sollen sich Gruppen von je 3 Studierenden in einer der ersten Veranstaltungen jeweils ein Informatikkonzept (Algorithmus, Daten, Information, System, …) auswählen und anhand von vier Kriterien (Horizonal-, Vertikal-, Zeit- und Sinnkriterium) begründen, warum es sich dabei um ein zentrales Konzept der Informatik handelt. Hierfür richte ich ein Etherpad (beispielsweise ein ZUMPad) ein, in dem ich die Arbeitsergebnisse der Gruppen schon einmal strukturell vorbereite:

Im Seminar geben ich den Gruppen dann den Link und bitte alle, in der Arbeitszeit (10-15 Minuten) ihre Ergebnisse in das Etherpad einzutragen. Zeitlich synchron können dann alle das Dokument bearbeiten, und jeder sieht in Echtzeit, wie sich das Dokument füllt. Dieses Vorgehen hat die folgenden Vorteile:

  • Unkomplizierte Einrichtung: Ein Etherpad ist schnell angelegt, schnell vorstrukturiert, und die Studierenden können es sofort und ohne Anmeldung bearbeiten.
  • Live-Monitoring: Ich kann vom Dozentenrechner aus sehen, wie weit die jeweiligen Gruppen sind. Wenn ich merke, dass eine Gruppe stark hinterher hinkt, kann ich zu ihr hingehen und mit ihr über ihre Schwierigkeiten sprechen. Alternativ kann ich auch direkt ins Dokument kleine Hinweise und kurzes Feedback hineinschreiben, ohne extra zu der Gruppe zu gehen. So bekomme ich als Dozent viel mehr von den einzelnen Gruppen mit, als wenn ich herumlaufe, und ich kann gezielt und intensiver mit einzelnen Gruppen sprechen, ohne dabei den Gesamtüberblick zu verlieren.
  • Präzision des Arbeitsauftrags: Wer kennt nicht die Situation, dass einem nach fünf Minuten Gruppenarbeit einfällt, dass man noch etwas vergessen hat zu sagen. Die schlechte Variante ist dann laut zu rufen „Hört bitte alle nochmal her, ich hab noch vergessen was zu sagen!“ Damit reißt man alle aus ihren Diskussionen heraus. Wenn man ein Etherpad verwendet, dann kann man die Zusatzinformation in den Textbereich der ersten Gruppe hineinschreiben und dann per Copy & Paste bei allen anderen Gruppen ebenfalls eintragen. Die Gruppen sehen die Zusatzinformation dann an ihrer Stelle des Dokuments.
  • Austausch zwischen Gruppen: Bereits während der Gruppenarbeitsphase können die Studierenden auch bereits die Zwischenstände der anderen Gruppen sehen und sich daran orientieren. Sie können auch bei den anderen Gruppen kommentieren und korrigieren. Dies kann man auch systematisieren, in dem man zwei Phasen der Gruppenarbeit einführt: In der ersten Phase arbeiten alle an ihren Ergebnissen. In der zweiten Phase bittet man die Gruppen, sich alle Ergebnisse der anderen Gruppen anzusehen und ggf. zu kommentieren.
  • Präsentation im Plenum: Nach der Gruppenarbeit ist es leicht, diskussionswürde Ergebnisse herauszugreifen und zu besprechen. Dazu wirft man einfach das Etherpad per Beamer an die Wand. Als Dozent hatte man während der Gruppenarbeitsphase schon genügend Zeit, sich präsentations- und diskussionswürde Ergebnisse herauszusuchen. Und wenn man das Zwei-Phasen-Modell durchgeführt hat, ist es auch gar nicht mehr notwendig, alle Ergebnisse zu besprechen, sondern nur besonders gute oder solche mit typischen Fehlern. Insgesamt spart man so jede Menge Zeit bei den Phasenwechseln – wertvolle Zeit für die intensive Diskussion von Ergebnissen oder für weitere inhaltliche Aktivitäten.

Etherpads haben den Vorteil, dass sie relativ schnell angelegt werden können und keiner der beteiligten Personen einen Account braucht. Nachteilhaft ist, dass die Etherpads vom Anbieter nicht ewig bereit gestellt werden. Man muss damit rechnen, dass das Etherpad in einem halben Jahr nicht mehr existiert. Der Anbietet Titanpad schließt jetzt beispielsweise auch ganz seine Pforten. Das ist aber für das oben beschriebene Szenario unerheblich, da es sich sowieso nur um eine zeitlich befristete Aktivität handeln. Nach der Veranstaltung kann man das Etherpad zum Beispiel als PDF-Datei exportieren und so für alle Teilnehmer*innen sichern.

Frage: Auf welche Weise habt ihr Etherpads in Lehrveranstaltungen eingesetzt? Lasst uns mal Einsatzmöglichkeiten sammeln!

Hörsaalspiel: Ring the Bell

Veröffentlicht: Dienstag, Mai 7, 2013 in FlippedClassroom

Nach der Durchführung des Spiels Reihenrotation hab ich heute mal wieder ein neues Hörsaalspiel ausprobiert. Teufelchen777 gab ihm den Namen „Ring the Bell“ 🙂

Das Spiel: Die Studierenden teilen sich in Vierergruppen auf und geben sich einen Gruppennamen. Die Gruppennamen schreibt man als Punktestandsliste an die Tafel. Das macht man natürlich nur, wenn es nicht zu viele Gruppen sind, es erhöht aber den Fun-Effekt, wenn sich Gruppen „Null-Durchblick“ oder „Der Chaotentrupp“ nennen. Dann zeigt man eine Aufgabe per Folie, die die Gruppen lösen müssen. In meinem Fall heute habe ich Relationen an die Wand geworfen mit der Aufgabe, jeweils zu bewerten, ob diese Relationen reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch oder transitiv sind. Sobald eine Gruppe fertig ist, muss ein Gruppenmitglied nach vorne rennen und auf eine Klingel hauen (auch eine Idee von Teufelchen777). Damit müssen alle mit der Bearbeitung stoppen. Es geht also auf Zeit.

ringthebell

Damits einigermaßen gerecht zu geht, nimmt man zwei Glocken, von denen man eine vorne und eine hinten im Raum platziert: Die hinteren Reihen müssen nach vorne rennen, die vorderen Reihen nach hinten. Da kommt Freude auf. 🙂 Sobald die Glocke ertönt, werden die Lösungen verglichen: Für jede richtige Lösung gibt es einen Pluspunkt, für jede falsche einen Minuspunkt, unbearbeitete Teilaufgaben geben 0 Punkte.

Was soll das, wird sich der ein oder andere fragen? Hier ein paar Aspekte, die eine Überlegung wert sind:

  • Die Studierenden sind durch die Videos im Flipped Classroom vorbereitet. D. h. wir haben 90 Minuten zur freien methodischen Gestaltung. Ein Hörsaalspiel, das beispielsweise 20 Minuten dauert, bildet damit eine Phase (von mehreren) in der Plenumsveranstaltung, die gezielt eingesetzt werden kann. Heute beispielsweise haben wir erst Fragen zu Relationen und ihren Eigenschaften besprochen, und nachdem es keine Fragen mehr gab, haben wir das Spiel gespielt – mit dem Ziel, dass jeder tatsächlich nochmal für sich überprüfen kann, ob er es wirklich verstanden hat.
  • In der Regel haben die Studierenden die Eigenschaften von Relationen trotz Durcharbeiten der Videos mit Hilfe des Worksheets zu Hause nicht wirklich tief und mit allen Konsequenzen begriffen. Wichtig ist also, dass sie sich mit verschiedenen Beispielen von Relationen auseinander setzen und auch die Möglichkeit erhalten, zu hinterfragen und zu begründen, warum denn nun eine bestimmte Eigenschaft gilt (oder nicht gilt). Nach jeder Runde wurden ausführliche Begründungen für die Lösungen gegeben, und es wurden auch zahlreiche Rückfragen gestellt. Warum ist die Relation nicht symmetrisch? Weshalb ist sie transitiv?Schließlich will man ja sicher gehen, dass man nicht doch einen Pluspunkt statt eines Minuspunkts verdient hat! (Wer Interesse hat an meinen Folien mit den Aufgaben, die gibt es online.)
  • Jeder ist involviert. Keiner hat rumgesessen, sich gelangweilt, mit dem Handy gespielt, sich mit dem Nachbarn über irgendwas anderes unterhalten. Also kein Verhalten, das man sonst so in Vorlesungen findet. Die Situation hat nicht erlaubt, dass sich jemand hängen lässt. Alle müssen für ihre Gruppe mitdenken, und schließlich geht es auf Zeit und es kommt auf Schnelligkeit an!
  • Bei einem Gespräch heute darüber wurde mir die Frage gestellt, ob es denn sinnvoll ist, dass man solche extrinsischen Motivatoren einsetzt. Die Studierenden sollen schließlich von der Sache begeistert sein. Dazu gibt es mehrere Dinge zu sagen: Zum einen ist das ein frommer Wunsch. Nicht jeder ist von der Sache von Anfang begeistert. Daher gibt es ja auch die „bösen“ extrinsischen Anreize wie Prüfungen usw. Das heißt aber: Ist es nicht sinnvoll, wenn man jemanden durch einen angenehmen extrinsischen Anreiz (Spaß durch Spiel) dazu bringt, sich mit einer Sache auseinander zu setzen, um dadurch erst die Chance zu haben, sich für die Sache zu begeistern? Ich jedenfalls will die Chance nicht ungenutzt lassen, dass die Studierenden durch Hörsaalspiele merken, dass die Beschäftigung mit Mathe Spaß machen kann, und dass sie vielleicht den Spaß dann auch aus der Mathematik selbst ziehen: An mathematischen Problemen knobeln macht nämlich außerhalb eines Spiels genauso viel Spaß wie im Spiel. Die Beschäftigung mit Mathematik soll positiv-emotional besetzt sein. Und ich glaube, Spiele können hier ein guter Katalysator auf dem Weg zu Freude an Mathematik sein. Und (auch das ist nur eine starke Vermutung) wer bereits Freude an Mathematik hat, der verliert sie nicht dadurch, dass Mathe in ein Spiel verpackt wird.

Ich werde weiter probieren und gemeinsam mit der Mitgliedern der Playgroup (Teufelchen777 & Luci) Hörsaalspiele sammeln, entwickeln und testen. In der Kombination mit dem Flipped Classroom passt das wirklich ganz gut. Und, ganz ehrlich: Auch mir macht es einen Riesenspaß!

Weiterentwicklung meiner Flipped-Classroom-Vorlesungen

Veröffentlicht: Sonntag, Dezember 23, 2012 in FlippedClassroom

So, nachdem mein letzter Beitrag Flipped Classroom nur ein Übergangsmodell intensiv diskutiert wurde, sind mir zahlreiche Gedanken durch den Kopf gegangen, wie ich meine Veranstaltungen weiterentwickeln könnten. Hier möchte ich mal all diese Ideen aufschreiben und gleichzeitig noch ein paar Missverständnisse ausräumen, die beim letzten Beitrag zu Tage getreten sind.

Es geht mir nicht um den flipped classroom im Allgemeinen, sondern um die Weiterentwicklung meiner spezifischen Flipped-Classroom-Veranstaltung, die einen ganz bestimmten Inhalt für eine ganz bestimmte Zielgruppe hat. Es geht um meine Einstiegs-Mathe-Veranstaltung für Studierende des Grundschul-Lehramts. Ich habe zwar die Vermutung, dass diese Entwicklung, die ich gerade „durchmache“, auch anderen Personen, die den flipped classroom durchführen, widerfahren kann (so ähnlich wie Daniel Bernsen das in einem Kommentar angedeutet hat), aber das muss natürlich jeder für sich selbst sehen.

Darüber hinaus wurde mein letzter Beitrag als Versuch verstanden, ich wolle die Inhalte nach der Methode richten (frei nach dem Motto „Was nicht passend ist, wird passend gemacht.“). Das Gegenteil ist der Fall: Ich will zunächst einmal die Inhalte einer kritischen Überprüfung unterziehen und mich anschließend auf ein geeignetes methodisches Vorgehen einigen. Ich wäre dabei prinzipiell jederzeit bereit, den flipped classroom gegen irgendeine andere Methode auzutauschen, falls er sich nicht mehr als tragfähig erweist (danach sieht es aber gerade nicht aus).

Zu den Inhalten: Ich mache in der Veranstaltung das, was vielerorts mehr oder weniger in den Basisveranstaltungen für Mathematiker enthalten ist. Diesen Kanon habe ich eigentlich unreflektiert übernommen („das macht man so“). Das Gespräch mit Peter hat irgendwie einen Hebel bei mir umgelegt, der bislang verhindert hat, dass ich mir Gedanken darüber gemacht habe, welche Inhalte in der Veranstaltung wirklich wichtig sind. Ich will dabei nicht alle Inhalte ändern, aber ich will alle hinterfragen. Es mag sein, dass das all diejenigen Inhalte wichtig sind, die ich jetzt schon mache. Dies muss aber erst die kritische Überprüfung ergeben.

Eigentlich sind Inhalte das falsche Wort. Ich muss mir über Lernziele klar werden (klarer als bislang und als sie bislang – relativ allgemein gehalten – vom Modulhandbuch vorgegeben werden). Und dabei spielen neben „Inhalten“ insbesondere auch fachwissenschaftlichen Denk- und Arbeitsweisen, Methoden, Kompetenzen (und wie die Prozessbegriffe alle heißen) eine Rolle. Welche Prozesse möchte ich fördern? Welche Arbeitsweisen sollen die Studierenden erlernen? Letztlich geht es insbesondere um die Anregung mathematischer Erkenntnisprozesse und die Motivierung, selbst Mathematik zu treiben. Und gerade zu diesem „kompetenzorientierten“ Ansatz passt die Methode flipped classroom, wie ich sie bislang eingesetzt habe (nämlich mit Video-Input und anschließendem „Üben“) nicht gut.

Trotzdem ist der erste Schritt „Weg von der traditionellen Vorlesung“ hin zum „Video-Input orientierten Flipped Classroom“ richtig gewesen (und ich würde ihn auch jedem empfehlen, der auf einfache Weise seine traditionelle Vorlesung umstellen möchte). Jetzt kommt für mich in einem zweiten Schritt die Änderung meiner Flipped-Classroom-Veranstaltung mit Video-Input hin zu einem Flipped Classroom, in dem insbesondere Aufgaben der Vorbereitung dienen.

Die Grundidee des aufgabenorientierten flipped classrooms wäre dann: Ich bereite vielfältige offene Aufgaben vor,  mit denen die Studierenden bestimmte Erkenntnisse gewinnen können (oder, konstruktivistischer formuliert: bei denen mit einer gewissen Wahrscheinlichkeit bestimmte Erkenntnisprozesse angeregt werden). Anschließend kommen sie ins Plenum, bringen ihre (ggf. zum Teil noch unfertigen) Ergebnisse mit, und wir tragen alles gemeinsam zusammen und ordnen das in der Großgruppe entsprechend ein. Anschließend können trotzdem natürlich noch „Übungsaufgaben“ gegeben werden, und es folgen die nächsten Vorbereitungsaufgaben für die nächste Woche. Ähnliche Ideen hatten wir bereits im SAiL-M-Projekt (siehe Abschnitt 3.1), und jetzt fügt sich für mich alles prima im aufgabenorientierten flipped classroom zusammen. Zur Verdeutlichung die Stufenfolge:

  1. traditionelle Vorlesung
  2. videoinput-orientierter flipped classroom (prima, weil sich jeder Student individuell mit dem Input befassen kann, anschließend kann im Plenum gemeinsam darüber diskutiert)
  3. aufgabenorientierter flipped classroom (in meinem Fall besser, weil die Studierenden konkrete mathematische Erfahrungen sammeln können, die anschließend mit ins Plenum gebracht und dort gemeinsam mit den anderen und mir systematisiert und abstrahiert werden können).

Neben der Plenumssitzung gibt es noch von Tutoren betreute Übungsgruppen. In diesen wurde bislang geübt. Jetzt könnten zukünftig die Sitzungen dazu dienen, sich in der Lerngruppe mit den vorbereitenden Aufgaben zu befassen. Tutoren könnten dazu auch Materialien mitbringen, sodass „enaktiv“ bestimmte Situationen untersucht werden können.

Eine weitere Idee: Studierende brauchen in dieser Vorbereitung vermutlich desöfteren Hilfe (help on demand). Diese Hilfe könnte man z.B. mit Videos bereit stellen, auf die nur bei Bedarf zugegriffen werden kann (wie genau das gelöst werden kann, ist eine spannende Frage). Die Videos wären somit nur noch „Input“ bei Bedarf. Und darüber hinaus kann man dann noch Quizze, interaktive Medien und weiteres Material zur Verfügung stellen (vgl. Jürgen Handkes Kommentar).

Dabei handelt es sich allerdings erst einmal um grobe Ideen, die noch ausgearbeitet werden müssen. Insbesondere stellen sich folgende Fragen:

  • Wie erreicht man es, dass Studierende zusätzlich zur Verfügung gestellte Videos wirklich erst ansehen, nachdem sie schon selbst versucht haben, die Aufgabe zu lösen, und nicht gleich von Anfang an?
  • Wie erreicht man es, dass Studierende nicht denken, sie müssten sich mit allen „für den Bedarf zur Verfügung gestellten Videos und Materialien“ befassen? Folgende Frage wird sicherlich kommen: „Muss ich mir die Videos jetzt auch noch alle ansehen?“ – Gemeint wäre aber: „Du musst dich mit allen Aufgaben befassen. Die Videos musst du nur ansehen, wenn du einen Tipp brauchst.“ Das wird für jede Menge Unsicherheit sorgen. Wie könnte man das vermeiden?
  • Und letztlich: Wie passt das zum Prüfungsformat „Klausur“? Peter Baireuther hatte sich äußerst kritisch diesbezüglich geäußert; er macht mündliche Prüfungen. Ich muss letztlich den Faktor „Klausur“ trotzdem immer im Hinterkopf behalten und die Tatsache, dass die Studierenden „klausurorientiert“ denken und dementsprechen auch lernen wollen. Wie kann man dem gerecht werden?

Was meint ihr?

Flipped Classroom nur ein Übergangsmodell?

Veröffentlicht: Samstag, Dezember 15, 2012 in FlippedClassroom
Schlagwörter:

Die umgedrehte Mathematikvorlesung ist ein prima Konzept: Studierende schauen sich die Vorlesung zu Hause auf Video an und kommen vorbereitet ins Plenum, in dem dann genug Zeit zur Verfügung steht, um Fragen zu klären, zu diskutieren und gemeinsam Probleme zu lösen. Präsenz erhält dadurch eine andere Bedeutung als in klassischen Vorlesungen: Man kommt, um mitzuarbeiten, und nicht, um zuzuhören. Studierende finden das Konzept überwiegend prima, und ich auch. Verbesserungsbedarf gibt es aber immer: Im laufenden Semester versuche ich, die Vorbereitung (Videos angucken) zu optimieren. Es besteht nämlich die Gefahr, dass die Videos  nur beiläufig angesehen, aber nicht „durchgearbeitet“ werden. Daher habe ich mich durch Methoden von Jürgen Handke und Jörn Loviscach anregen lassen und habe jetzt Stützstrukturen um die Videos drumrumgebastelt:

  1. Es werden die Lernziele explizit angegeben.
  2. Es wird ein Worksheet (Lückenskript) zur Verfügung gestellt, das ausgedruckt und beim Ansehen ausgefüllt werden soll. Dabei handelt es sich, wenn man so will,  um einen vorstrukturierten Vorlesungsmitschrieb. (Ist im Prinzip eine ganz alte Idee; das hat auch mein Doktorvater Herbert Löthe früher schon gemacht, aber irgendwie bin ich selbst nie so richtig auf die Idee gekommen, das zu tun).
  3. Auf jedem Worksheet gibt es unten einen Bereich, in dem die Studierenden Fragen aus den Videos notieren sollen, die sie ins Plenum mitbringen können (Studierende hatten berichtet, dass sie ihre Fragen bis zum Plenum wieder vergessen; wofür man alles Stützen braucht :-)).
  4. Ich füge Quiz-Aufgaben zur Selbstüberprüfung hinzu, die ich mit learningapps.org (eine Entwicklung von Michael Hielscher und Kollegen von der PH Bern) erstelle und dort auch die Quiz-Aufgaben in Youtube-Videos einbetten kann (schöne Sache).

Der Video-Input zu Relationen ist ein ganz gutes Beispiel, das veranschaulicht, was ich meine. Und das Konzept „Flipped Classroom“ entwickelt sich für mich tatsächlich zu so etwas wie einer total ausgefeilten, perfekt durchgestylten Methode.

Aber ist das das, was ich will?

Seit einiger Zeit hab ich diesbezüglich schon ein gewisses Unbehagen (links unten, gleich zwischen Magen und Milz). Denn: Das ganze Konzept ist sehr stark „inputorientiert“, also: Ich gebe Input per Videos, anschließend üben die Studierenden das, was sie in den Videos gesehen haben. Einführung, Übung. Einführung, Übung. Einführung, Übung. Mathematikdidaktisch ist das eigentlich eher dritte Reihe. Im Projekt SAiL-M waren wir da schon bezüglich der Aufgaben weiter: Hier gab es auch zahlreiche offene Aufgaben, in denen nicht nur geübt wurde, sondern in denen umfassende eigene Erfahrungen und Entdeckungen gemacht werden konnten, bevor irgendwie überhaupt ein Wort des Dozenten über den Inhalt gefallen war. Induktives Vorgehen nennt man so etwas, oder Erfahrungslernen. Ich versuche zwar, diese Aufgaben im Rahmen der umgedrehten Mathevorlesung auch einzubinden, und zwar indem Studierenden diese Art Aufgaben bearbeiten sollen, bevor sie den Video-Input zum Thema ansehen, aber das Unbehagen bleibt trotzdem: Die Videos sind das Maß aller Dinge. Egal, welche Erfahrungen gemacht wurden, in den Videos wird gesagt, wie es „richtig“ geht. Die eigenen Erfahrungen und die interessanten Entdeckungen, alle beugen sich voller Respekt vor der fertigen Mathematik. Welchen Wert haben meine ganz eigenen Entdeckungen, wenn ich anschließend ein Video gucke, in dem darin gar nicht darauf eingegangen wird, und der Dozent stattdessen einfach das kanonische Wissen präsentiert?

Heute habe ich Peter Baireuther einen Besuch abgestattet. Peter ist Professor für Mathematikdidaktik an der PH Weingarten, und er hat mich vor einiger Zeit angeschrieben und ein paar kritische Punkte zu meiner Veranstaltung ziemlich deutlich geäußert. Peter und ich hatten damals vereinbart, dass wir uns mal zusammensetzen und darüber sprechen. Heute war es so weit. Was für ein Luxus! Einen Tag lang mit einem Kollegen durch die schneeverschneite Landschaft in Weingarten spazieren und über Veranstaltungskonzepte für Mathematikvorlesungen sprechen! Das war ein äußerst wertvolles Arbeitsgespräch, und ich finde, es sollte mehr solche Gelegenheiten geben, bzw.: Man sollte sich mehr Zeit für solche Gespräche nehmen. Ähnliche Kritik an meiner Veranstaltung (siehen unten) wurde zwar bereits z.B. von *m.g.* und Jörn Loviscach geäußert, aber im Alltag nimmt man die Kritik vielleicht nicht so ernsthaft und umfassend auf, wie man das eigentlich sollte. Heute hat sich tatsächlich für mich vieles von der Kritik verdichtet, nicht zuletzt auch deswegen, weil Peter und ich heute die Gelegenheiten hatten, einen ganze Nachmittag gebündelt zu diskutieren, und das in einem ganz anderen Umfeld als dem, das ich gewohnt bin.

Peters Kritikpunkte bezogen sich auf zwei Dinge: 1) die Inhalte meiner Vorlesung „Mathematische Grundlagen 1“ und 2) die methodische Herangehensweise. Peters Hauptfragen sind: Weshalb führe ich die Studierenden systematisch in die Mengenlehre, in den Begriff „Relation“ und „Funktion“ ein, weshalb in die Aussagenlogik? (Ähnlich neulich die Frage von Jörn Loviscach auf Google+, weshalb ich eigentlich vollständige Induktion mache; eine Frage, gegen die ich mich zunächst innerlich aufgebäumt habe, die aber durchaus berechtigt ist.) Wem hilft diese Systematik? Die Studierenden werden später Lehrerinnen und Lehrer, keine Mathematiker. Sie sollen Lernprozesse beim Schülerinnen und Schülern begleiten, und nicht diese in die Fachsystematik einführen. Also weshalb provoziere ich nicht dieselben Lernprozesse bei meinen Studenten und führe sie stattdessen in die Fachsystematik ein? Was hilft einem Studenten die Fachsystematik, wenn er selbst noch nicht auf einen entsprechenden Erfahrungsschatz zurückgreifen kann, der damit systematisiert wird? Was hilft es einem Studenten, wenn er (relativ erfahrungsarm) die Eigenschaften Reflexivität, Symmetrie und Transitivität bei Äquivalenzrelationen anwenden kann? Wozu braucht er das später? Wozu braucht er überhaupt den Begriff? Was nützt einem Lehrer der Begriff der Äquivalenzrelation? Peters Standpunkt: Die Studierenden sollen vielmehr exemplarisch eigene Erfahrungen machen und systematisieren lernen. Sie sollen lernen, was es bedeutet, mathematisch tätig zu sein, und nicht „Mathematik“ lernen. Er gestaltet daher seine Veranstaltungen radikal erfahrungsbasiert. Eine zu meiner Vorlesung vergleichbare Veranstaltung von ihm ist Denken in Zahlen und Strukturen. Das Grundprinzip: Die ganze Veranstaltung ist nicht inputbasiert, sondern aufgabenbasiert (zahlreiche Aufgaben sind unter dem Link zu finden). Die Studierenden bekommen reichhaltige Aufgaben, in denen sie vielfältige eigene Entdeckungen machen können: zu Spiegelzahlen, Stellenwertsystemen, Quadratzahlen, Zahlzerlegungen, Primzahlen usw. Mit diesen Erfahrungen kommen sie in die „Vorlesung“ (die ebenso keine ist), und dort werden ihre Erfahrungen besprochen, gemeinsam systematisiert, und dann die Aufgaben für die nächste Woche vorbesprochen. Wenn man so will: Flipped Classroom, ohne Videos, rein aufgabenbasiert. Es gibt praktisch keine Lehrvorträge. Geprüft wird am Ende der Vorlesung mündlich, die Studierenden präsentieren zu bestimmten Themen ihre Entdeckungen, dann wird vertiefend nachgefragt. In der gesamten Veranstaltung gibt es keine systematische Einführung in die Mengenlehre usw. Peters Argument: Die Mathematik hat mehrere tausend Jahre gebraucht, die Mengenlehre als Abstraktion hervorzubringen. Weshalb sollten wir diese Abstraktion an den Anfang stellen? Weshalb sollten wir die Abstraktion „Relation“ einführen? Oder „Funktion“? Wem hilft das? Lassen wir die Studierenden lieber Aufgaben bearbeiten, in denen sich sich entdeckend mit funktionalen Zusammenhängen befassen. Lasst uns „Begriffe“ einführen, wenn Studierende „begriffen“ haben. Nicht vorher. Oder, lasst sie uns weglassen. Wozu, wenn bereits begriffen wurde? Und letztlich geht es um den Prozess zu lernen, wie man in reichhaltigen Lernsituationen begreift. In die Aussagenlogik einzuführen kostet unnötig Zeit, und man erlernt eine „Sprache“, die ohne Fleisch versehen ein Werkzeug ist, dass die Studierenden nicht fachmännisch anwenden können. Man gibt ihnen Werkzeuge an die Hand, deren Wirkungsweise sie nicht durchdringen – das zeigt seine Erfahrung (und letztlich auch meine). Also lassen wir die Studierenden lieber Situationen durchdringen und verzichten auf den Formalismus, der niemandem nützt und letztlich vielleicht sogar schädlich ist, nämlich dann, wenn die Studierenden eine ähnliche Formalismusliebe in der Schule pflegen.

An dieser Stelle stehe ich mit meiner umgedrehten Mathevorlesung, in der ich schön feinstsäuberlich in Aussagenlogik usw. einführe, ziemlich peinlich berührt da und finde das eigentlich ziemlich doof, was ich da mache. Näher betrachtet stellt sich mir die Situation so dar: Der Flipped Classroom ist eine prima Methode, um von einer traditionellen Voll-Frontal-Veranstaltung in eine Form zu wechseln, in der mehr Interaktionsmöglichkeit in der Präsenzveranstaltung geschaffen wird. Zum Aufbrechen traditioneller Formate ist das ganz prima, und sicher auch eine super Methode, um Dozenten, die ihre Vorlesung lieb gewonnen haben, von mehr Studierendenaktivität zu überzeugen, ohne dabei auf ihre Vorträge verzichten zu müssen. Also, für hochschuldidaktische Fortbildungen eine prima Sache mit dem Ziel, Dozenten davon zu überzeugen, mit der Umstellung ihrer Veranstaltungen „mal einfach und ohne viel Aufwand anzufangen“.

Stehenbleiben dürfen wir dabei aber nicht. Obwohl ich meine Vorlesung noch nicht komplett mit Worksheets usw. für den Einsatz im Flipped Classroom optimiert habe, denke ich seit heute, dass es das eigentlich „nicht sein kann“. Vor einem so radikalen Umstellungsschritt, wie ihn Peter Baireuther vollzogen hat, schrecke ich allerdings zurück: Das Konzept verursacht bei Studierenden vermutlich eine größere Unsicherheit (was prinzipiell nicht schlecht ist, wenn es darum geht, erlernte starre Muster des Mathematiklernens loszuwerden), allerdings gibt es bei mir am Ende des Moduls eine Klausur, und dieses Prüfungsformat passt nicht so recht zu Peters Veranstaltungskonzept. Gibt es eine Mischung zwischen Flipped Classroom mit Videos und der aufgabenorientierten Herangehensweise? Kann man Videos nur „für Bedarf“ zur Verfügung stellen? Kann man Flipped-Classroom-Einheiten reduzieren/gezielter einsetzen? Wann passt der Flipped Classroom, wann nicht? Anders gefragt: Wann sind Demonstrationen sinnvoll, wann sollte man als Dozent „mal was zeigen“, wann lieber nicht? Kann man das überhaupt kombinieren, oder wird letztlich nur das als wichtig erachtet, was in der Klausur abgeprüft werden kann?  Ziemlich viel Stoff für mich zum Nachdenken.

Wie denkt ihr darüber?